

APPROACHES TO MEASURING HULL AND PROPELLER PERFORMANCE

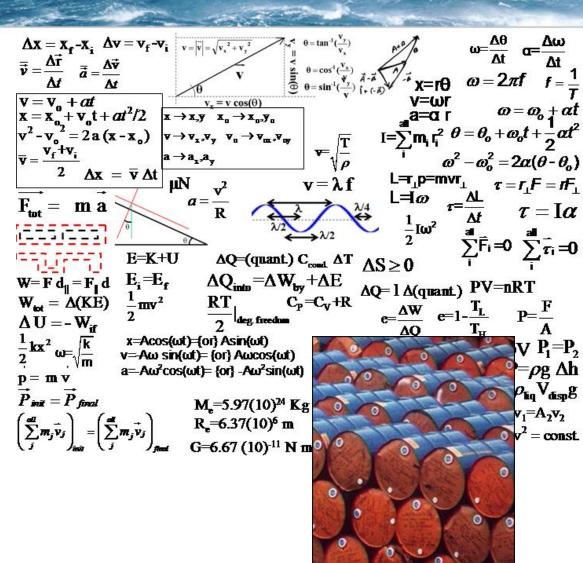
Maarten Flikkema MARIN Trials & Monitoring Oslo, January 15, 2013

OBJECTIVE OF PERFORMANCE MONITORING

- Fuel saving
- Hull and propeller condition monitoring
 - Planning of propeller and hull cleaning
 - Recognised damage to hull and propeller
- Performance optimisation
 - Trim
- Contract validation
 - Charter contracts
 - performance guarantee

DO OBJECTIVES INFLUENCE APPROACH?

YES! But how:


- Required accuracy
 - -> approach to performance monitoring
- Required output
 - -> approach to performance monitoring
 - -> approach for performance analysis

Other influences:

- Person in charge of performance monitoring
- Available resources
- Operational profile of the ship
- Ship type

HOW DO WE DEFINE PERFORMANCE?

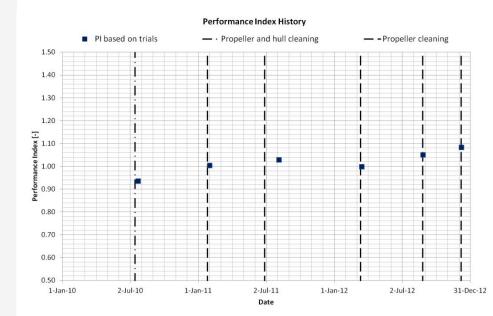
PERFORMANCE MEASUREMENT APPROACH

Dedicated speed trials

- Only for performance decay over time
- Interesting effects may be missed due to time between trials
- Most accurate measurement and analysis procedure

Continuous monitoring

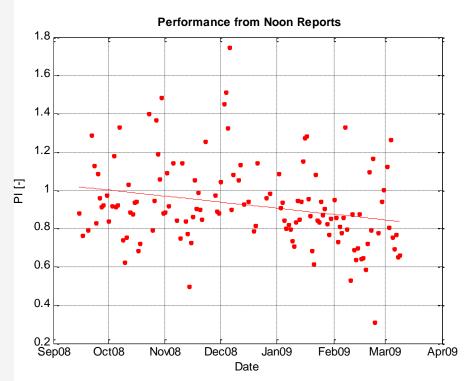
- Less accurate analysis than dedicated speed trials
- Large dataset containing valuable information
- Large dataset containing inexplicable performance deviations


Noon reports

- Not accurate due to human interference
- Time between 'measurement points' very large

DEDICATED SPEED TRIALS

- Challenges:
 - Dedicated manoeuvres
 - Constant loading condition
 - Limited amount of data
- Advantages:
 - High accuracy
 - Understandability of results

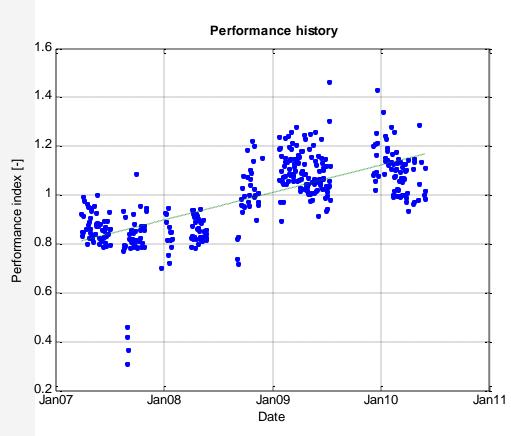

NOON REPORTS

Challenges Noon reports:

- Changing weather conditions over 24 hours
- Acceleration and deceleration of vessel
- Combining 24 hour average (speed, fuel consumption) with snap shot (weather, power)
- Manual input from crew

• Advantages:

- Easy implementation
- Data is already there


CONTINUOUS PERFORMANCE MONITORING

Challenges:

- Measurement accuracy
- Analysis procedure
- Big volumes of data

• Advantages:

- Big volumes of data
- Detect short term changes in performance

CONCLUSION MEASUREMENT PROCEDURE

Dedicated speed trials

- High accuracy
- Long term
- Available budget
- Noon reports
 - very long term
 - low required accuracy
- Continuous monitoring
 - Moderate accuracy
 - Short and long term
 - available resources

TO NORMALISE OR NOT TO NORMALISE?

Normalise for:

- Wind condition
- Wave condition
- Loading condition

• Statistical approach:

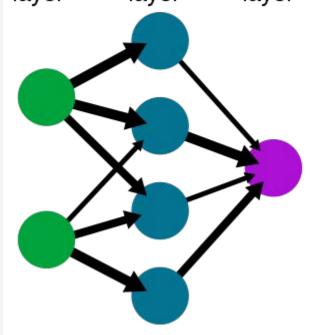
- Filter out bad weather
- Filter out loading conditions
- Assume normal distribution of effects of:
 - Wind
 - Waves
 - Drift
 - Loading condition

NORMALISATION APPROACH

- Corrections for added resistance due to:
 - Wind
 - Waves
 - Water depth
- Strong points
 - Hydrodynamic meaningful output
- Challenges
 - Measurement accuracy
 - Unknown effects not accounted for (yet)

STATISTICAL APPROACH

- Effects will average out over long period:
 - Added resistance due to wind
 - Added resistance due to waves
 - Effect of trim
 - Sea water and air temperature
- Strong points:
 - Easy to implement
 - Easy to understand
- Challenges
 - Lack of hydrodynamic meaning of result
 - Limited application



SELF LEARNING

Neural network

- Links between parameters
- Relation of links determined based on measurements
- System updates when more data is available
- Strong points:
 - Accuracy
 - Ship specific
- Challenges:
 - Difficult to comprehend black-box approach
 - Knowledge of <u>all</u> influences of performance should be known

A simple neural network input hidden output layer layer layer

REQUIREMENTS

- Accuracy
 - Effect to be proven by monitoring
 - Limited by measurement and analysis accuracy
- Transparency
 - Understand how results are generated
 - Understand deviations in performance
- Understandability
 - Closely related to transparency
 - Output should have a hydrodynamic meaning

COMBINED APPROACH

- Use filtering technique from statistical approach and normalise the remaining data
- Filter data based on hydrodynamic knowledge
- Filter bad weather conditions
- Exclude conditions which cannot be normalised
- Normalise for:
 - Wind
 - Waves
 - Loading condition

Never filter out data without a solid explanation

AVAILABLE METHODS

Jotun Hull Performance Measurement Method

MACSEA Hull Medic

Propulsion Dynamics CASPER

- BMT SMARTPOWER
- Etc. Etc. Etc.

CONCLUSIONS ANALYSIS METHOD

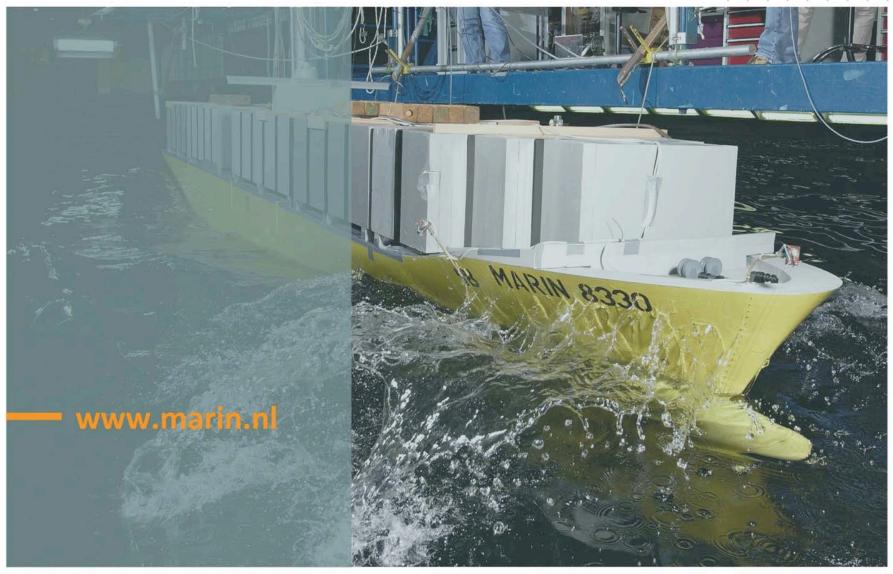
- Statistical approach
 - Long term
 - Relative performance
 - Moderate accuracy
- Normalisation approach:
 - Short and long term
 - High required accuracy
 - Good understanding of hydrodynamics
- Self learning

THE WAY FORWARD

- Further development should focus on:
 - Improving measurement accuracy
 - Relative wind speed and direction
 - Speed log
 - Improving analysis accuracy
 - Understand missing effects on performance
 - Filter parameters
 - Improving empirical correction methods

SUMMARY

- Choice measurement approach depends on monitoring objective
- Choice analysis approach depends also on experience
- One standard for performance monitoring is not possible
- Room for improvement of measurement and analysis methods
 - Too early to standardise



DISCUSSION

- Is it time for a standard?
- What should the standard focus on?
 - Data collection
 - Data analysis
 - Data collection and analysis
- What are the limits of the standard?
 - Engine performance
 - Hull and propeller

THANK YOU!

MARIN P.O. Box 28 6700 AA Wageningen The Netherlands T +31 317 49 39 11 F +31 317 49 32 45 E info@marin.nl
I www.marin.nl

