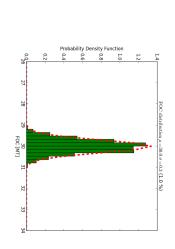
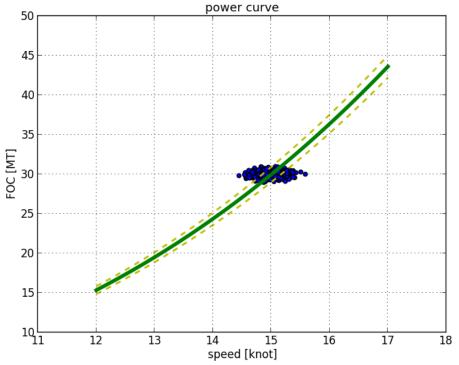
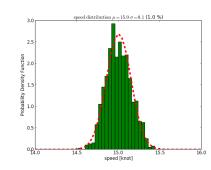

Required accuracy on measurement of speed, fuel consumption and power for 1% accuracy of estimation on performance


MTI and JSTRA 2012/3/15


an emerge of 1% accuracy of measurement

 For example, for measurement of speed of 15.0 knot, measurement results may scatter as figure below.

What happens under 1% accuracy of measurement in both speed and fuel consumption?



Total accuracy will be 3.2 %.

1000 simulations by Monte Carlo method

Average 30 ton of fuel at accuracy σ 1%

Average 15 knot
Of speed at accuracy
σ 1%

Total accuracy under various accuracy of measurement of imulations by speed and fuel consumption

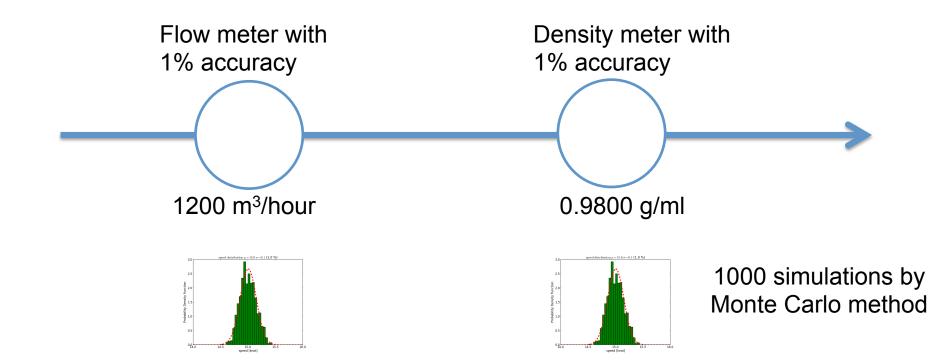
1000 simulations by Monte Carlo method

Accuracy at measurement of speed

accuracy
at
measurement
of fuel
consumption

	0.1%	0.2%	0.3%	0.4%	0.5%	0.6%	0.7%	0.8%	0.9%	1.0%
0.1%	0.32	0.61	0.91	1.20	1.50	1.80	2.10	2.40	2.70	3.00
0.2%	0.36	0.63	0.92	1.22	1.51	1.81	2.11	2.41	2.71	3.01
0.3%	0.42	0.67	0.95	1.24	1.53	1.82	2.12	2.42	2.72	3.01
0.4%	0.50	0.72	0.99	1.26	1.55	1.84	2.14	2.43	2.73	3.02
0.5%	0.58	0.78	1.03	1.30	1.58	1.87	2.16	2.45	2.75	3.04
0.6%	0.67	0.85	1.08	1.34	1.61	1.89	2.18	2.47	2.76	3.06
0.7%	0.76	0.92	1.14	1.39	1.66	1.93	2.21	2.50	2.79	3.08
0.8%	0.85	1.00	1.20	1.44	1.70	1.97	2.25	2.53	2.82	3.10
0.9%	0.95	1.08	1.27	1.50	1.75	2.01	2.28	2.56	2.85	3.13
1.0%	1.04	1.17	1.35	1.56	1.80	2.06	2.33	2.60	2.88	3.16

Accuracy of estimation

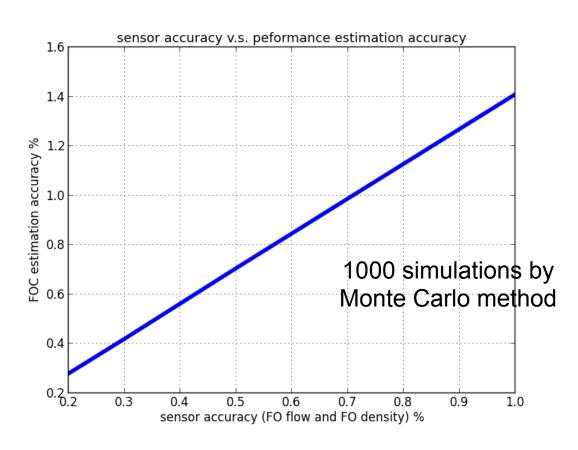

Blue 1.0% or less Yellow1.0% ~2.0% Orange2.0% ~3.0% Red more than3.0% In order to obtain total 1% accuracy for estimation of performance, it is necessary to have 0.3% accuracy on measurement of speed and 0.4% accuracy on measurement of fuel consumption.

Error of speed measurement is usually greater than error of fuel measurement. Therefore, error of speed measurement influences greatly. Fuel consumption Y is function of X³, then

$$Y = aX^{3}$$
, $(Y + \Delta Y) / Y - 1 = (X + \Delta X)^{3} / X^{3} = 3 \Delta X / X$,

Therefore, error of X acts three times bigger than error of Y.

What happens on calculation of fuel consumption under 1% accuracy of measurement of fuel flow rate and fuel density?



Fuel consumption = flow rate x density

1% accuracy of fuel flow rate and density measurement results in 1.4% accuracy of fuel consumption calculation.

What happens on calculation of fuel consumption under various accuracy of measurement of fuel flow rate and fuel density?

Accuracy						
Fuel flow	density	Fuel consumption				
1.0%	1.0%	1.41 %				
0.7 %	0.7 %	0.99 %				
0.5 %	0.5 %	0.71 %				
0.2 %	0.2 %	0.28 %				

In order to obtain 0.4% accuracy of calculation of fuel consumption, it is necessary to measure fuel flow rate and fuel density in 0.2% accuracy.

Conclusion

- Goal: 1% accuracy on estimation of performance
- Necessary accuracy of each measurement requires as follow:

sensor	Required accuracy		
Doppler log	0.3 %		
Power meter or fuel consumption	0.4 %		
Fuel flow meter	0.2 %		
Fuel density meter	0.2 %		